Revised CBSE Syllabus 2021 for Class 11 Physics
PHYSICS (Code No. 042) COURSE STRUCTURE
Class XI – 202021 (Theory)
Time: 3 hrs. Max Marks: 70
No. of Periods  Marks  
Unit–I  Physical World and Measurement 
6 
23 
Chapter–1: Physical World  
Chapter–2: Units and Measurements  
UnitII  Kinematics 
16 

Chapter–3: Motion in a Straight Line  
Chapter–4: Motion in a Plane  
Unit–III  Laws of Motion 
10 

Chapter–5: Laws of Motion  
Unit–IV  Work, Energy and Power 
12 
17 
Chapter–6: Work, Energy and Power  
Unit–V  Motion of System of Particles and Rigid Body 
16 

Chapter–7: System of Particles and Rotational Motion  
UnitVI  Gravitation 
8 

Chapter–8: Gravitation  
Unit–VII  Properties of Bulk Matter 
22 
20 
Chapter–9: Mechanical Properties of Solids  
Chapter–10: Mechanical Properties of Fluids  
Chapter–11: Thermal Properties of Matter  
Unit–VIII  Thermodynamics 
10 

Chapter–12: Thermodynamics  
Unit–IX  Behaviour of Perfect Gases and Kinetic Theory of Gases 
08 

Chapter–13: Kinetic Theory  
Unit–X  Oscillations and Waves 
23 
10 
Chapter–14: Oscillations  
Chapter–15: Waves  
Total  131  70 
Unit I: Physical World and Measurement 6 Periods Chapter–1: Physical World
Physicsscope and excitement; nature of physical laws; Physics, technology and society. (To be discussed as a part of Introduction and integrated with other topics)
Chapter–2: Units and Measurements
Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures.
Dimensions of physical quantities, dimensional analysis and its applications.
Unit II: Kinematics 16 Periods
Chapter–3: Motion in a Straight Line
Elementary concepts of differentiation and integration for describing motion, uniform and non uniform motion, average speed and instantaneous velocity, uniformly accelerated motion, velocity – time and positiontime graphs.
Relations for uniformly accelerated motion (graphical treatment).
Chapter–4: Motion in a Plane
Scalar and vector quantities; position and displacement vectors, general vectors and their notations; equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors, relative velocity, Unit vector; resolution of a vector in a plane, rectangular components, Scalar and Vector product of vectors.
Motion in a plane, cases of uniform velocity and uniform accelerationprojectile motion, uniform circular motion.
Unit III: Laws of Motion 10 Periods
Chapter–5: Laws of Motion
Intuitive concept of force, Inertia, Newton’s first law of motion; momentum and Newton’s second law of motion; impulse; Newton’s third law of motion.(recapitulation only)
Law of conservation of linear momentum and its applications.
Equilibrium of concurrent forces, Static and kinetic friction, laws of friction, rolling friction, lubrication.
Dynamics of uniform circular motion: Centripetal force, examples of circular motion (vehicle on a level circular road, vehicle on a banked road).
Unit IV: Work, Energy and Power 12 Periods Chapter–6: Work, Energy and Power
Work done by a constant force and a variable force; kinetic energy, workenergy theorem, power.
Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); nonconservative forces: motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.
Unit V: Motion of System of Particles and Rigid Body 16 Periods Chapter–7: System of Particles and Rotational Motion
Centre of mass of a twoparticle system, momentum conservation and centre of mass motion. Centre of mass of a rigid body; centre of mass of a uniform rod.
Moment of a force, torque, angular momentum, law of conservation of angular momentum and its applications.
Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions.
Moment of inertia, radius of gyration, values of moments of inertia for simple geometrical objects (no derivation).
Unit VI: Gravitation 8 Periods
Chapter–8: Gravitation
Universal law of gravitation. Acceleration due to gravity (recapitulation only) and its variation with altitude and depth.
Gravitational potential energy and gravitational potential, escape velocity, orbital velocity of a satellite, Geostationary satellites.
Unit VII: Properties of Bulk Matter 22 Periods Chapter–9: Mechanical Properties of Solids
Stressstrain relationship, Hooke’s law, Young’s modulus, bulk modulus
Chapter–10: Mechanical Properties of Fluids
Pressure due to a fluid column; Pascal’s law and its applications (hydraulic lift and hydraulic brakes), effect of gravity on fluid pressure.
Viscosity, Stokes’ law, terminal velocity, streamline and turbulent flow, critical velocity, Bernoulli’s theorem and its applications.
Surface energy and surface tension, angle of contact, excess of pressure across a curved surface, application of surface tension ideas to drops, bubbles and capillary rise.
Chapter–11: Thermal Properties of Matter
Heat, temperature,( recapitulation only) thermal expansion; thermal expansion of solids, liquids and gases, anomalous expansion of water; specific heat capacity; Cp, Cv – calorimetry; change of state – latent heat capacity.
Heat transferconduction, convection and radiation (recapitulation only), thermal conductivity, qualitative ideas of Blackbody radiation, Wein’s displacement Law, Stefan’s law, Greenhouse effect.
Unit VIII: Thermodynamics 10 Periods
Chapter–12: Thermodynamics
Thermal equilibrium and definition of temperature (zeroth law of thermodynamics), heat, work and internal energy. First law of thermodynamics, isothermal and adiabatic processes.
Second law of thermodynamics: reversible and irreversible processes
Unit IX: Behaviour of Perfect Gases and Kinetic Theory of Gases 08 Periods Chapter–13: Kinetic Theory
Equation of state of a perfect gas, work done in compressing a gas.
Kinetic theory of gases – assumptions, concept of pressure. Kinetic interpretation of temperature; rms speed of gas molecules; degrees of freedom, law of equipartition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path, Avogadro’s number.
Unit X: Oscillations and Waves 23 Periods
Chapter–14: Oscillations
Periodic motion – time period, frequency, displacement as a function of time, periodic functions.
Simple harmonic motion (S.H.M) and its equation; phase; oscillations of a loaded spring restoring force and force constant; energy in S.H.M. Kinetic and potential energies; simple pendulum derivation of expression for its time period. Free, forced and damped oscillations (qualitative ideas only), resonance.
Chapter–15: Waves
Wave motion: Transverse and longitudinal waves, speed of travelling wave, displacement relation for a progressive wave, principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, Beats
PRACTICALS Total Periods: 32
The record, to be submitted by the students, at the time of their annual examination, has to include:
Record of at least 8 Experiments 4 from each section, to be performed by the students
Record of at least 6 Activities [with 3 each from section A and section B], to be demonstrated by teacher.
EVALUATION SCHEME
Time Allowed: Three hours Max. Marks: 30
Two experiments one from each section  (8+8)Marks 
Practical record (experiment and activities)  7Marks 
Viva on experiments, and activities  7 Marks 
Total  30 Marks 
SECTION–A
Experiments
 To measure diameter of a small spherical/cylindrical body and to measure internal diameter and depth of a given beaker/calorimeter using Vernier Callipers and hence find its volume.
 To measure diameter of a given wire and thickness of a given sheet using screw gauge.
OR
To determine volume of an irregular lamina using screw gauge.
 To determine radius of curvature of a given spherical surface by a spherometer. To determine the mass of two different objects using a beam balance.
 To find the weight of a given body using parallelogram law of
 Using a simple pendulum, plot its LT^{2} graph and use it to find the effective length of second’s pendulum.
OR
To study variation of time period of a simple pendulum of a given length by taking bobs of same size but different masses and interpret the result.
 To study the relationship between force of limiting friction and normal reaction and to find the co efficient of friction between a block and a horizontal
OR
To find the downward force, along an inclined plane, acting on a roller due to gravitational pull of the earth and study its relationship with the angle of inclination θ by plotting graph between force and sin θ.
Activities
 To make a paper scale of given least count, e.g., 0.2cm, 0.5
 To determine mass of a given body using a metre scale by principle of
 To plot a graph for a given set of data, with proper choice of scales and error bars.
 To measure the force of limiting friction for rolling of a roller on a horizontal
 To study the variation in range of a projectile with angle of
 To study the conservation of energy of a ball rolling down on an inclined plane (using a double inclined plane).
 To study dissipation of energy of a simple pendulum by plotting a graph between
square of amplitude and time.
SECTION–B
Experiments
 To determine Young’s modulus of elasticity of the material of a given wire.
OR
To find the force constant of a helical spring by plotting a graph between load and extension.
 To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between P and V, and between P and 1/V.
 To determine the surface tension of water by capillary rise
OR
To determine the coefficient of viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body.
 To study the relationship between the temperature of a hot body and time by plotting
a cooling curve.
 To determine specific heat capacity of a given solid by method of
 To study the relation between frequency and length of a given wire under constant tension using
OR
To study the relation between the length of a given wire and tension for constant frequency using sonometer.
 To find the speed of sound in air at room temperature using a resonance tube by two resonance positions.
Activities
 To observe change of state and plot a cooling curve for molten
 To observe and explain the effect of heating on a bimetallic
 To note the change in level of liquid in a container on heating and interpret the observations.
 To study the effect of detergent on surface tension of water by observing capillary
 To study the factors affecting the rate of loss of heat of a
 To study the effect of load on depression of a suitably clamped metre scale loaded at (i) its end (ii) in the
 To observe the decrease in pressure with increase in velocity of a
Practical Examination for Visually Impaired Students Class XI
Note: Same Evaluation scheme and general guidelines for visually impaired students as given for Class XII may be followed.
A. Items for Identification/Familiarity of the apparatus for assessment in practicals (All experiments)
Spherical ball, Cylindrical objects, vernier calipers, beaker, calorimeter, Screw gauge, wire, Beam balance, spring balance, weight box, gram and milligram weights, forceps, Parallelogram law of vectors apparatus, pulleys and pans used in the same ‘weights’ used, Bob and string used in a simple pendulum, meter scale, split cork, suspension arrangement, stop clock/stop watch, Helical spring, suspension arrangement used, weights, arrangement used for measuring extension, Sonometer, Wedges, pan and pulley used in it, ‘weights’ Tuning Fork, Meter scale, Beam balance, Weight box, gram and milligram weights, forceps, Resonance Tube, Tuning Fork, Meter scale, Flask/Beaker used for adding water.
B. List of Practicals
 To measure diameter of a small spherical/cylindrical body using vernier
 To measure the internal diameter and depth of a given beaker/calorimeter using vernier calipers and hence find its
 To measure diameter of given wire using screw
 To measure thickness of a given sheet using screw
 To determine the mass of a given object using a beam
 To find the weight of given body using the parallelogram law of
 Using a simple pendulum plot LT and LT^{2} Hence find the effective length of second’s pendulum using appropriate length values.
 To find the force constant of given helical spring by plotting a graph between load and
 (i) To study the relation between frequency and length of a given wire under constant tension using a
(ii) To study the relation between the length of a given wire and tension, for constant frequency, using a sonometer.
 To find the speed of sound in air, at room temperature, using a resonance tube, by observing the two resonance
Note: The above practicals may be carried out in an experiential manner rather than recording observations.
Prescribed Books:
 Physics PartI, Textbook for Class XI, Published by NCERT
 Physics PartII, Textbook for Class XI, Published by NCERT
 Laboratory Manual of Physics, Class XI Published by NCERT
 The list of other related books and manuals brought out by NCERT (consider multimedia also).